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Abstract 

CityGML provides an effective approach to the sharing and inoperability of 3D GIS spatial data. However, due to the large amount of 

data, CityGML’s resolving, transferring, and rendering processes during visualization are inefficient in a standalone system, causing 

considerable delays in viewing the information of large 3D maps for users. The cloud computing technique is introduced to address 

these problems in this paper. The Hadoop Distributed File System (HDFS) is employed to store the huge amount of CityGML data. A 

MapReduce-based parallel CityGML data visualization scheme is proposed. A Hadoop-based public cloud for a 3D city information 

service is constructed in the cloud, allowing cloud users to interact with the cloud via the service interface and obtain the desired high-

quality 3D city scenarios. The visualization effectiveness and interoperability efficiency of the large-scale CityGML 3D virtual city 
data are improved. 
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1 Introduction 

 

CityGML (City Geography Markup Language) is a 

general data model for representing the data storage and 

exchange format of virtual 3D city models. It provides an 

effective approach to the sharing and inoperability 

problem of 3D spatial data. However, its model’s 

structural complexity and the huge amount of document 

data cause inefficiencies in the resolving, transferring, and 

rendering processes during visualization. As a result, users 

suffer considerable delays in viewing the 3D maps of large 

areas. Its visualization and interoperability inefficiencies 

have caused a bottleneck in the standalone system. Related 

work [1] shows that efficient CityGML visualization is 

largely dependent on the rapid loading, resolving, and 

transferring of CityGML documents. It is feasible to load, 

resolve, and transfer CityGML more efficiently by parallel 

processing, because CityGML documents contain many 

independent and complete elements of the city model and 

thus can be partitioned [1]. In this paper, HDFS in the 

Hadoop open-source cloud computing platform is used to 

implement distributed storage of CityGML documents. A 

MapReduce-based parallel scheme for visualizing 

CityGML data is proposed. A Hadoop-based public cloud 

service for 3D city information is constructed in the cloud, 

allowing cloud users to interact with the cloud via the 

service interface and obtain the desired high-quality 3D 

city scenarios. The visualization effectiveness and 

interoperability efficiency of the large-scale CityGML 3D 

virtual city data are improved. 
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2 CityGML overview 

 

CityGML is a standard format for exchanging 3D city 

model data, developed in 2002 within the scope of the 

"Special Interest Group SIG3D" from North-Rhine 

Westphalia, Germany [2]. It is mainly used to describe the 

common semantic information of 3D city objects. 

CityGML is not only a XML-based open coding standard, 

but also an open, general data model for storing and 

exchanging virtual 3D city objects. CityGML is an 

extension of GML 3.0 to 3D city modeling, and its latest 

version is CityGML 2.0, which has been adopted by the 

Open Geospatial Consortium (OGC) as the official 

standard. CityGML defines the classes of most 

geographical objects in the city and the interrelations 

between them, and fully considers the regional model’s 

geometric, topological, semantic, and appearance 

properties, including the subject classification hierarchy, 

aggregation, relation between objects, and spatial 

properties [3]. CityGML is modularized, consisting of a 

core model (CityGML Core) and 11 thematic extension 

modules [3]. The core techniques of CityGML modeling 

encompass the LOD (Level of Detail) model, 

lexeme/geometry integration model, modularization idea, 

and application domain extension (ADE) [2,3], in which 

the LOD model is the basis of the CityGML model. 

 

2.1 LOD MODEL 

 

To improve visualization and data analysis efficiency, 

CityGML adopts different levels of detail to describe the 

3D city model. The LOD model can display different 

details according to different requirements. To visualize 

and analyze the same object at different granularities, an 
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object can have different LOD models that can be 

integrated with each other. The LOD model has 5 levels 

(LOD0-LOD4) in an ascending order of the detail’s 

accuracy. An instance of the details at LODs 0-4 is 

provided in Figure 1 [3], where LOD 0 is the lowest level 

at an accuracy of 5m, representing a 2.5D digital terrain 

model (DTM), and can overlay aerial images and rendered 

maps; LOD 1 usually refers to the city block mode 

consisting of the ‘building model’ without the roof 

structure; LOD 2 mostly represents the appearances of roof 

structures and buildings or vegetation objects; LOD 3 

represents the building model’s walls, roof structures, 

balconies, projections, textures, materials, as well as 

detailed vegetation and transport objects [3]; LOD 4 is an 

improvement on LOD 3, and is mostly used to represent 

the interior of the building (e.g., rooms, doors in the rooms, 

ladders, and furniture within the buildings), being the most 

detailed level at an accuracy of 0.2m. 

 
FIGURE 1 An instance of the detail at the five LOD levels (LODs 0-4) 

 

2.2 CITYGML DOCUMENT STRUCTURE 

 

CityGML uses XML as its data storage and exchange 

format, so its documents conform to the XML 

specifications [5]. The XML structure is usually 

represented with the structural file (.xsd) and the instance 

file (.xml). The former defines the model rules, whereas 

the latter encompasses the specific data [6]. Each label in 

the CityGML instance documents has a special meaning, 

and each document contains a CityModel label as the 

model’s root [7,8]. Each CityObjectMember in CityGML 

corresponds to a city object (e.g., a building or a road), and 

has complete model structure. Multiple related 

CityObjectMembers can form a CityGML city model. 

Hence, a CityGML document can be divided into many 

independent CityObjectMember objects [1]. CityGML 

adopts the boundary representation model, and uses a set 

of boundary surfaces to describe a 3D entity object (e.g., a 

building) [9,10]. The most basic element of the CityGML 

label is gml:pos, representing the 3D coordinate points 

composing the polygon. CityGML represents the polygon 

by organizing the points into a linear ring gml:LinearRing 

or a point list gml:posList. Its feature is that each polygon 

consists of a sequence of points whose first element meets 

with the last element. This type of structure is helpful in 

being transferred into the data structure for image 

rendering [1]. 

3 Cloud computing and MapReduce mode 

 

Cloud computing originates from Dell data center 

solutions, Amazon EC2 products, and Google-IBM 

distributed computation projects, and is based on 

distributed computing, parallel computing, grid 

computing, utility computing, SaaS, SOA, virtualization, 

and server clusters. Its ancestor is the grid computing that 

solves large-scale problems via parallel computing and the 

public computing that provides computing resources as the 

measurable service. Later on, it flourished in the context of 

rapid progress in broadband Internet and virtualization 

[11,12]. Cloud computing uses many techniques, the most 

important of which include: the programming model, data 

management, data storage, virtualization, and cloud 

computing platform management [13]. Other techniques 

encompass the MapReduce programming model, mass 

data distributed storage, and management. Cloud 

computing can be classified into IaaS (Infrastructure as a 

Service), PaaS (Platform as a Service), and SaaS (Software 

as a Service) [14], according to the type of service. 

MapReduce is a popular, simplified parallel computing 

model in the cloud computing platform. It can run parallel 

applications on the large-scale distributed clusters and 

features great robustness and availability [15]. MapReduce 

from Hadoop is open-source and its function is similar to 

MapReduce from Google. MapReduce is comprised of 

Map and Reduce, which are responsible for decomposing 

tasks and aggregating the intermediate results, 

respectively. Using this computing model, users can easily 

develop distributed programs to compute mass data [16]. 

HDFS and MapReduce are the core of Hadoop. The 

greatest advantage of Hadoop distributed computation lies 

in efficiently processing local data by combining HDFS 

with MapReduce. 

 

4 Key techniques to CityGML visualization 

 

4.1 JAXB-BASED CITYGML RESOLVING 

 

Traditionally, XML documents are resolved via the 

document object model (DOM), data binding, or streaming 

transformation. The first two models involve reading the 

entire CityGML document to the memory, thus entailing 

huge memory consumption and low resolving efficiency 

[20]. The third method is highly efficient because it can 

perform rapid streaming of inputs without the need to load 

the document data into the memory. However, it is poorly 

intuitive and thus hard to use. There are two common 

approaches to streaming transformation: the Simple API 

for XML (SAX) in Java and the XmlReader in .NET [1]. 

JAXB (Java Architecture for XML Binding) can generate 

Java classes according to XML Schema [10]. JAXB 

provides a method for reversing XML instance document 

into Java object tree, and can also write the contents of the 

Java class tree into the XML instance document. 

In this paper, the CityGML documents are resolved via 

a combination of SAX and JAXB in Java. The CityGML 
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documents are fragmented such that each fragment is 

resolved through data binding. During the resolving 

process, SAX will first be used to perform a streaming read 

of the CityGML document and its validity will be verified. 

Next, the document will be divided into independent 

fragments according to the CityObjectMember label, and 

each fragment will be stored in the cache. Finally, JAXB 

will be employed to transform the fragments in the cache 

into the object instance. CityGML resolving is 

considerably sped up, because only a small number of 

CityObjectMember fragments need to be resolved each 

time. Furthermore, this fragmenting strategy enables 

CityGML to be resolved in a parallel manner on the 

distributed cluster or in the standalone multi-core 

environment, improving CityGML resolving efficiency. 

 

4.2 CITYGML DATA CONVERSION 

 

To perform CityGML 3D map rendering, the data structure 

of the resolved CityGML model needs to be converted so 

that it is suitable for 3D map rendering. It has been proven 

in [1] that this conversion is usually more time-consuming 

than resolving, and the time proportion of data conversion 

in relation to document resolving increases with increased 

data volume. For large-scale CityGML city models, too 

much time consumption of conversion will hinder users 

from viewing in real-time and thus becomes a bottleneck 

in efficient, real-time visualization. 

Like the resolving process, the CityObjectMember-

based parallel processing strategy can be used for 

CityGML data conversion to enable real-time visualization 

and reduce time consumption of data conversion. 

 

4.3 JAVA3D-BASED CITYGML 3D GRAPH 

RENDERING 

 

Java3D is one of the most important technical 

specifications in Web3D and is widely used in 3D graph 

rendering and displays. Java3D API is the Sun-defined 3D 

display interface. Its underlying graphic library, OpenGL, 

is encapsulated with DirectX [21]. Java3D supports 

dynamic modeling, efficient rendering, platform 

independence, and flexible interaction, being particularly 

suitable for 3D landscape generation and interaction in the 

Internet environment [21].In Java 3D, two geometric 

objects (TriangleArray and QuadArray) are used to 

construct 3D graphs [22].The TriangleArray is always a 

convex polygon and its rendering efficiency is usually 

higher than that of QuadArray. Thus, it is easier for the 3D 

engine to optimize. In addition, the indexed mode 

consumes less memory than the non-indexed mode does, 

especially when the data volume is huge, because the 

indexed mode can reuse the point and color data [22]. 

The CityGML geometric model adopts the boundary 

representation model and has a large data volume. So, in 

this paper, Indexed TriangleArrayis are used to construct 

the CityGML 3D graph. To improve rendering efficiency, 

the CityGML 3D graph can be rendered by constructing 

the grid object. 

 

4.4 CITYGML DATA STORAGE 

 

The data involved in this paper include: the original 

CityGML data, intermediate data, historical data, and 

metadata. Due to the considerable size of the CityGML 

data, the idea behind organizing the data in this paper is 

that the first three types of data are stored in HDFS, 

whereas the other metadata is stored into HBase. HBase is 

a column-based database that differs greatly from the 

traditional relation database in terms of data table structure 

[23]. CityGML is based on LOD and thus supports 

stratified or partitioned storage. The quadtree algorithm is 

used in this paper to partition and query each LOD. The 

metadata and quadtree codes can represent the relation 

between partitions or objects. The metadata information 

tables in the HBase database encompasses Divide, LODS, 

and Records. 

 

5 MapReduce-based CityGML parallel visualization 

 

As aforementioned, CityGML document visualization 

involves CityGML document resolving, transferring, and 

rendering (Java3D). In the distributed environment, each 

process can only handle a small number of 

CityObjectMember segments to process CityGML in a 

parallel manner and improve CityGML visualization 

efficiency. The process of MapReduce-based CityGML 

parallel visualization is shown in Figure 2. 

 
FIGURE 2 MapReduce-based CityGML parallel visualization 
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First, the input CityGML document is segmented into 

several file blocks, each of which contains several 

CityObjectMember segments, and submits them to the 

master control program at the master node in the cluster 

[24]. The Master allocates Map or Reduce tasks according 

to the loads of each node. The Map tasks at each node will 

perform parallel processing of the input CityGML data 

blocks via resolve (), transfer (), and Render(), output the 

intermediate results (i.e., the <key, value>) and store it in 

the cache [2]. The Reduce node sorts all the intermediate 

data acquired according to the key values, and puts the data 

with the same key values into the same group. Finally, the 

Reduce node calls the user-defined Reduce function 

(Merge ()) to combine the sorted intermediate data, and 

temporarily store the output destination files into HDFS. 

After executing all Map and Reduce tasks, the Master 

hands control back to the entry to the MapReduce 

program. 

 

6 Hadoop-based CityGML 3D city information cloud 

service 

 

The Hadoop-based distributed service clusters and HDFS 

can be used to perform distributed processing (resolving, 

transferring, and rendering) and storage of large-scale 

CityGML data, because of the considerable size of the 

CityGML data and the limited computing and storing 

abilities of the traditional servers. Implementation of the 

Hadoop-based CityGML 3D city information cloud 

service is shown in Figure 3. In the cloud service clusters, 

there are two types of nodes: Master and Slave. The Master 

is responsible for storing CityGML metadata, scheduling 

tasks, and disseminating map data. The Master uses 

OGC’s W3DS specifications and GeoServer to provide the 

3D spatial information services, and includes three service 

interfaces: the 3D feature data service interface, tile map 

service (TMS) interface, and the CityGML spatial data 

access interface. The Slave is responsible for storing and 

performing parallel processing (resolving, transferring, 

and rendering) of CityGML data. 

If the client requests a 3D feature (or image layer) 

service, then the Master in the cloud receives the request 

first, loads and segments the CityGML data of the 

corresponding area according to the requested spatial area 

and the CityGML metadata. Data blocks in HDFS are 

entrusted to different Slave nodes for parallel resolving, 

transferring, and rendering in order to generate their 

respective 3D feature data blocks. Next, the feature data 

blocks are combined. The client can obtain the 3D feature 

data address using the dedicated interface from Master, 

download the feature data from the server via the address, 

and render and display the data through Java3D. If the 

client requests the CityGML spatial data, then the Master 

can directly provide the client with the CityGML spatial 

data access interface. Using this interface, the client can 

obtain the address to directly download the CityGML 

spatial data from the server. After being resolved and 

processed at the client, the downloaded 3D data can 

display the 3D scenario via the web browser. In addition, 

if the size of the CityGML data requested by the client is 

huge, then the client can perform parallel resolving, 

transferring, and rendering of the CityGML data. The 

generated 3D graphs can be delivered to users in the TMS 

manner, i.e., segmenting the graph into block-shaped maps 

using the image pyramid’s multi-resolution model. This 

strategy can desirably improve the downloading speed and 

3D rendering effectiveness [25,26]. 

 

FIGURE 3 Implementation of a Hadoop-based CityGML 3D city information cloud service 
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The CityGML data volume is large, so when users 

request to view the same areas, it suffices for the cloud to 

offer the historical results stored without repeating the 

procedures. The information requested by the users and the 

cloud processing results should be outputted and stored 

into HDFS according to the stratification and partitioning 

principles. This method amounts to the construction of a 

cache for data acquisition in the cloud, thus greatly 

reducing the cloud’s implementation complexity and 

improving the response speed [27,28]. During the 

MapReduce-based parallel processing of the CityGML 

data, users can view the scenario in real-time without the 

need to wait for the data to be loaded completely, 

performing various operations (e.g., roaming and scaling) 

on the scenario smoothly during data loading. 

7 Experimental results and analysis 

 

7.1 EXPERIMENTAL PLATFORM SETUP 

 

To test the response speed of the Hadoop-based CityGML 

3D information service, a Hadoop cloud computing 

platform is developed in LAN in this paper. This 

experimental platform adopts the bus topology, including 

a Hadoop server (Master, NameNode), a backup Hadoop 

server (Secondary NameNode), 10 Hadoop data nodes 

(Slave, DataNode), and a virtual server. The platform’s 

software and hardware configurations are shown in 

Table 1. 

TABLE 1 Hadoop cloud computing experimental platform’s software and hardware configurations 

Hardware Processor Memory Operation System Hard disk space Number of hosts 

Hadoop server 

(Master, NameNode) 

Intel dual-coreE5200 (CPU 

frequency 2.50GHZ) 
3.2GB Ubuntu Server 10.104 500GB 1 

Backup Hadoop server 

(Secondary 

NameNode) 

Intel dual-core E5200 (CPU 
frequency 2.50GHZ) 

3.2GB Ubuntu Server 10.104 500GB 1 

Hadoop data node  

(Slave, DataNode) 

Intel dual-core E5200 (CPU 

frequency 2.50GHZ) 
3.2GB 

Red Hat Linux(5 hosts) 

Windows XP SP3(5 hosts) 
500GB 10 

Virtual server 
Intel dual-core E5200 (CPU 
frequency 2.50GHZ) 

3.2GB Windows 2003 Server 500GB 1 

 

7.2 SELECTION OF EXPERIMENTAL DATA 

 

The CityGML dataset Ettenheim-LoD3) of the virtual 3D 

model of a community in Ettenheim, Germany, was 

selected as the experimental data the data are available at 

http://www.citygml.org). This dataset is based on 

CityGML 1.0.0 standard, 41.0 M in size, and the 

corresponding experimental scenarios are shown in 

Figures 4a and 4b. The CityGML model has over 300 

objects at LODs 0-3, including the digital terrain models, 

rivers, roads, vegetation, buildings, materials, and textures 

of the interior and exterior of the buildings. Multiple 

identical communities can be put together to construct 

larger CityGML 3D scenario maps and provide more 

experimental data. Combinations of multiple Ettenheim-

LoD3 datasets can be represented as Ettenheim-LoD3-

m×n, where m denotes the number of communities 

horizontally, and n denotes the number of communities 

vertically, i.e., the combined dataset is geometrically m×n 

times the original size of the dataset. Figure 4c shows the 

CityGML scenario that combines four communities 

Ettenheim-LoD3-2×2). 

 

 

7.3 COMPARATIVE EXPERIMENTS AND 

ANALYSIS 

 

Recall that clients suffer considerable delay when viewing 

large 3D maps, because the resolving, transferring, and 

rendering processes are inefficient due to the huge data 

volume in the CityGML document to be visualized. The 

response time refers to the time interval from the moment 

that the user issues the request to view the entire scenario 

at the client to the moment that the server returns the 

processing results and the returned results are rendered and 

displayed, amounting to the sum of the time needed to 

load, resolve, transfer, transmit, and render the CityGML 

data. Obviously, the response time is an intuitive measure 

   
a) b) c) 

FIGURE 4 CityGML virtual 3D model scenario of the experimental area: a) Panorama of the community, b) Buildings in the community, 

c) Combined CityGML 3D scenario Ettenheim-LoD3-2×2) 
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of the delay that the user has to suffer in viewing large 3D 

maps. The impacts of different factors on the response time 

are analyzed as follows. 

 

7.3.1 Impact of the service mode on the response time 

 

As shown in Figure 3, the cloud can deliver the CityGML 

3D information service by offering 3D feature data, TMS 

tile map or directly the CityGML data. These three 

methods were used, respectively, for comparative 

experimentation at a default Hadoop segmenting 

granularity), as shown in Table 2. 

TABLE 2 Comparison of response time at clients adopting different service modes 

Service mode Dataset File size(MB) Number of nodes Response time(s) 

3D feature data Ettenheim-LoD3 41.0 12 55.21 
TMS Ettenheim-LoD3 41.0 12 32.65 

CityGML data Ettenheim-LoD3 41.0 12 85.33 

3D feature data Ettenheim-LoD3-2×2 164.0 12 161.06 
TMS Ettenheim-LoD3-2×2 164.0 12 85.96 

CityGML data Ettenheim-LoD3-2×2 164.0 12 316.39 

3D feature data Ettenheim-LoD3-4×4 656.0 12 425.21 
TMS Ettenheim-LoD3-4×4 656.0 12 152.65 

CityGML data Ettenheim-LoD3-4×4 656.0 12 1132.33 

 

It shows that compared with other two methods, TMS 

has a shorter response time, allowing the user to view the 

large 3D map with slight delay. The reason for this is that 

the CityGML data in this method is all processed in a 

parallel manner by the cloud, and the processing results are 

delivered to the client in the form of tile maps, minimizing 

the sum of the requesting, processing and response time. 

7.3.2 Impact of the segmenting granularity on the 

response time 

 

Table 2 shows that TMS provides the best response speed. 

In the following image, for a given amount of data 

Ettenheim-LoD3-6×6, about 3.8GB), TMS performance is 

evaluated at different granularity, as shown in Figure 5.

 

 

FIGURE 5 Impact of the segmenting granularity on the response time 

 

Figure 5 shows that the delay that the client suffers 

when viewing large 3D maps varies according to the 

segmenting granularity. When the granularity is in the 

range from 2-32 MB, the response time decreases with 

increased granularity. When the granularity is over 32 MB, 

the response time increases, that is, the response time is 

minimized when the granularity is 32 MB. The reason for 

this is that for a given amount of CityGML data to be 

processed, a smaller granularity means the data is 

segmented into a larger number of data blocks. Although 

each data block is processed more quickly, the large 

number of data blocks will increase the consumption of 

time for processing, loading, and managing data blocks at 

each node. On the other hand, if the granularity is large, 

then the number of data blocks will decrease, causing some 

nodes in the cluster to stand idle, whereas other nodes slow 

down while processing large data blocks. Some nodes may 

even wait for each other. Thus, in this case, the larger the 

granularity, the longer the response time at the client. 

 

7.3.3 Impact of data volume on the response time 

 

Ettenheim-LoD3 is used in our work as the baseline data 

block 41.0MB), and multiple baseline data blocks are 

combined to form the composite CityGML datasets of 

varying sizes. In the following image, the number of data 

blocks is used to represent the data volume the fragmenting 

granularity is 32MB). TMS is evaluated using different 

numbers of data volume blocks) at a fixed data size 

Ettenheim-LoD3-6×6, about 3.8GB). 
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FIGURE 6 Impact of data volume on the response time 

 

Figure 6 shows that in the case of a small CityGML 

data volume, the MapReduce parallel mode has no obvious 

advantages, but in the case of the CityGML data volume 

with 1-16 data blocks, the serial response time is even 

shorter than the MapReduce parallel response time. The 

MapReduce parallel mode’s advantages, however, become 

conspicuous when the data volume is huge. When 

CityGML has 16+ data blocks, the serial response time 

increases almost exponentially, whereas the MapReduce 

parallel mode’s response time rises slowly. Hence, the 

MapReduce parallel mode is more suited for parallel 

processing of large-scale CityGML data. In the case of 144 

data blocks, the MapReduce parallel mode’s response time 

is less than one quarter of that of the serial mode

 

 

FIGURE 7 Impact of data volume on cloud parallel speedup ratio 

 

Speedup is an important measure of parallel 

performance. Let r denote the number of processes or 

nodes, Tc and Tp denote the serial computation time and the 

parallel computation time, respectively, so the speedup 

ration, S, can be defined as S=Tc/Tp. Ideally, S=r, that is, 

the parallel programs with r processes or nodes can run r 

times as far as the serial programs. In this case, the speedup 

ratio is also called the linear speedup ratio. The ideal 

speedup ratio is 12 for our work. Figure 7 shows, however, 

that the speedup ratio of the MapReduce-based parallel 

processing of the CityGML data is clearly less than 12. The 

reason is that the frequent communication and resource 

scheduling between nodes during actual parallel 

computation cause severe time overheads, making it only 

possible to approximate, rather than reach, the linear 

speedup ratio [30]. Figure 7 shows that the speedup ratios 

of the cloud clusters change with increased volume of 

CityGML data. When the CityGML data volume is less 

than 144 data blocks, the speedup ratio of the MapReduce 

parallel mode increases obviously. But when the CityGML 

data volume is 144+ data blocks, the speedup ratio of the 

MapReduce parallel mode decreases. The reason for this is 

that in the case of a huge CityGML data volume, each node 

has to process a much larger number of data blocks, 

resulting in much larger time overheads caused by frequent 

communication and resource scheduling between nodes. It 

is even possible that some data blocks may be in the 

waiting state and thus cannot be processed promptly. 

 

8 Conclusions 

 

Clients suffer enormous delays when viewing large 

CityGML 3D maps. To address this problem, a 

MapReduce-based CityGML data parallel visualization 

scheme was proposed. The CityGML data is resolved, 

transferred, and rendered in the cloud. The Hadoop-based 
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3D information service public cloud is constructed in the 

cloud, enabling users to smoothly view, zoom in on, and 

roam large CityGML scenarios. Experimental results 

showed that the proposed scheme enables the large-scale 

CityGML 3D virtual city data to be visualized and inter-

operated more efficiently. 
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