

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 91-98 Huang Fenghua

91

CityGML-based 3D GIS visualization in the cloud environment

Fenghua Huang*

Sunshine College, Fuzhou University, Fuzhou 350015, Fujian, China

Received 1 October 2014, www.cmnt.lv

Abstract

CityGML provides an effective approach to the sharing and inoperability of 3D GIS spatial data. However, due to the large amount of

data, CityGML’s resolving, transferring, and rendering processes during visualization are inefficient in a standalone system, causing

considerable delays in viewing the information of large 3D maps for users. The cloud computing technique is introduced to address

these problems in this paper. The Hadoop Distributed File System (HDFS) is employed to store the huge amount of CityGML data. A

MapReduce-based parallel CityGML data visualization scheme is proposed. A Hadoop-based public cloud for a 3D city information

service is constructed in the cloud, allowing cloud users to interact with the cloud via the service interface and obtain the desired high-

quality 3D city scenarios. The visualization effectiveness and interoperability efficiency of the large-scale CityGML 3D virtual city
data are improved.

Keywords: cloud computing, virtual city model, CityGML, hadoop open-source platform

1 Introduction

CityGML (City Geography Markup Language) is a

general data model for representing the data storage and

exchange format of virtual 3D city models. It provides an

effective approach to the sharing and inoperability

problem of 3D spatial data. However, its model’s

structural complexity and the huge amount of document

data cause inefficiencies in the resolving, transferring, and

rendering processes during visualization. As a result, users

suffer considerable delays in viewing the 3D maps of large

areas. Its visualization and interoperability inefficiencies

have caused a bottleneck in the standalone system. Related

work [1] shows that efficient CityGML visualization is

largely dependent on the rapid loading, resolving, and

transferring of CityGML documents. It is feasible to load,

resolve, and transfer CityGML more efficiently by parallel

processing, because CityGML documents contain many

independent and complete elements of the city model and

thus can be partitioned [1]. In this paper, HDFS in the

Hadoop open-source cloud computing platform is used to

implement distributed storage of CityGML documents. A

MapReduce-based parallel scheme for visualizing

CityGML data is proposed. A Hadoop-based public cloud

service for 3D city information is constructed in the cloud,

allowing cloud users to interact with the cloud via the

service interface and obtain the desired high-quality 3D

city scenarios. The visualization effectiveness and

interoperability efficiency of the large-scale CityGML 3D

virtual city data are improved.

* Corresponding author’s e-mail: huangfenghuanfj@163.com

2 CityGML overview

CityGML is a standard format for exchanging 3D city

model data, developed in 2002 within the scope of the

"Special Interest Group SIG3D" from North-Rhine

Westphalia, Germany [2]. It is mainly used to describe the

common semantic information of 3D city objects.

CityGML is not only a XML-based open coding standard,

but also an open, general data model for storing and

exchanging virtual 3D city objects. CityGML is an

extension of GML 3.0 to 3D city modeling, and its latest

version is CityGML 2.0, which has been adopted by the

Open Geospatial Consortium (OGC) as the official

standard. CityGML defines the classes of most

geographical objects in the city and the interrelations

between them, and fully considers the regional model’s

geometric, topological, semantic, and appearance

properties, including the subject classification hierarchy,

aggregation, relation between objects, and spatial

properties [3]. CityGML is modularized, consisting of a

core model (CityGML Core) and 11 thematic extension

modules [3]. The core techniques of CityGML modeling

encompass the LOD (Level of Detail) model,

lexeme/geometry integration model, modularization idea,

and application domain extension (ADE) [2,3], in which

the LOD model is the basis of the CityGML model.

2.1 LOD MODEL

To improve visualization and data analysis efficiency,

CityGML adopts different levels of detail to describe the

3D city model. The LOD model can display different

details according to different requirements. To visualize

and analyze the same object at different granularities, an

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 91-98 Huang Fenghua

92

object can have different LOD models that can be

integrated with each other. The LOD model has 5 levels

(LOD0-LOD4) in an ascending order of the detail’s

accuracy. An instance of the details at LODs 0-4 is

provided in Figure 1 [3], where LOD 0 is the lowest level

at an accuracy of 5m, representing a 2.5D digital terrain

model (DTM), and can overlay aerial images and rendered

maps; LOD 1 usually refers to the city block mode

consisting of the ‘building model’ without the roof

structure; LOD 2 mostly represents the appearances of roof

structures and buildings or vegetation objects; LOD 3

represents the building model’s walls, roof structures,

balconies, projections, textures, materials, as well as

detailed vegetation and transport objects [3]; LOD 4 is an

improvement on LOD 3, and is mostly used to represent

the interior of the building (e.g., rooms, doors in the rooms,

ladders, and furniture within the buildings), being the most

detailed level at an accuracy of 0.2m.

FIGURE 1 An instance of the detail at the five LOD levels (LODs 0-4)

2.2 CITYGML DOCUMENT STRUCTURE

CityGML uses XML as its data storage and exchange

format, so its documents conform to the XML

specifications [5]. The XML structure is usually

represented with the structural file (.xsd) and the instance

file (.xml). The former defines the model rules, whereas

the latter encompasses the specific data [6]. Each label in

the CityGML instance documents has a special meaning,

and each document contains a CityModel label as the

model’s root [7,8]. Each CityObjectMember in CityGML

corresponds to a city object (e.g., a building or a road), and

has complete model structure. Multiple related

CityObjectMembers can form a CityGML city model.

Hence, a CityGML document can be divided into many

independent CityObjectMember objects [1]. CityGML

adopts the boundary representation model, and uses a set

of boundary surfaces to describe a 3D entity object (e.g., a

building) [9,10]. The most basic element of the CityGML

label is gml:pos, representing the 3D coordinate points

composing the polygon. CityGML represents the polygon

by organizing the points into a linear ring gml:LinearRing

or a point list gml:posList. Its feature is that each polygon

consists of a sequence of points whose first element meets

with the last element. This type of structure is helpful in

being transferred into the data structure for image

rendering [1].

3 Cloud computing and MapReduce mode

Cloud computing originates from Dell data center

solutions, Amazon EC2 products, and Google-IBM

distributed computation projects, and is based on

distributed computing, parallel computing, grid

computing, utility computing, SaaS, SOA, virtualization,

and server clusters. Its ancestor is the grid computing that

solves large-scale problems via parallel computing and the

public computing that provides computing resources as the

measurable service. Later on, it flourished in the context of

rapid progress in broadband Internet and virtualization

[11,12]. Cloud computing uses many techniques, the most

important of which include: the programming model, data

management, data storage, virtualization, and cloud

computing platform management [13]. Other techniques

encompass the MapReduce programming model, mass

data distributed storage, and management. Cloud

computing can be classified into IaaS (Infrastructure as a

Service), PaaS (Platform as a Service), and SaaS (Software

as a Service) [14], according to the type of service.

MapReduce is a popular, simplified parallel computing

model in the cloud computing platform. It can run parallel

applications on the large-scale distributed clusters and

features great robustness and availability [15]. MapReduce

from Hadoop is open-source and its function is similar to

MapReduce from Google. MapReduce is comprised of

Map and Reduce, which are responsible for decomposing

tasks and aggregating the intermediate results,

respectively. Using this computing model, users can easily

develop distributed programs to compute mass data [16].

HDFS and MapReduce are the core of Hadoop. The

greatest advantage of Hadoop distributed computation lies

in efficiently processing local data by combining HDFS

with MapReduce.

4 Key techniques to CityGML visualization

4.1 JAXB-BASED CITYGML RESOLVING

Traditionally, XML documents are resolved via the

document object model (DOM), data binding, or streaming

transformation. The first two models involve reading the

entire CityGML document to the memory, thus entailing

huge memory consumption and low resolving efficiency

[20]. The third method is highly efficient because it can

perform rapid streaming of inputs without the need to load

the document data into the memory. However, it is poorly

intuitive and thus hard to use. There are two common

approaches to streaming transformation: the Simple API

for XML (SAX) in Java and the XmlReader in .NET [1].

JAXB (Java Architecture for XML Binding) can generate

Java classes according to XML Schema [10]. JAXB

provides a method for reversing XML instance document

into Java object tree, and can also write the contents of the

Java class tree into the XML instance document.

In this paper, the CityGML documents are resolved via

a combination of SAX and JAXB in Java. The CityGML

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 91-98 Huang Fenghua

93

documents are fragmented such that each fragment is

resolved through data binding. During the resolving

process, SAX will first be used to perform a streaming read

of the CityGML document and its validity will be verified.

Next, the document will be divided into independent

fragments according to the CityObjectMember label, and

each fragment will be stored in the cache. Finally, JAXB

will be employed to transform the fragments in the cache

into the object instance. CityGML resolving is

considerably sped up, because only a small number of

CityObjectMember fragments need to be resolved each

time. Furthermore, this fragmenting strategy enables

CityGML to be resolved in a parallel manner on the

distributed cluster or in the standalone multi-core

environment, improving CityGML resolving efficiency.

4.2 CITYGML DATA CONVERSION

To perform CityGML 3D map rendering, the data structure

of the resolved CityGML model needs to be converted so

that it is suitable for 3D map rendering. It has been proven

in [1] that this conversion is usually more time-consuming

than resolving, and the time proportion of data conversion

in relation to document resolving increases with increased

data volume. For large-scale CityGML city models, too

much time consumption of conversion will hinder users

from viewing in real-time and thus becomes a bottleneck

in efficient, real-time visualization.

Like the resolving process, the CityObjectMember-

based parallel processing strategy can be used for

CityGML data conversion to enable real-time visualization

and reduce time consumption of data conversion.

4.3 JAVA3D-BASED CITYGML 3D GRAPH

RENDERING

Java3D is one of the most important technical

specifications in Web3D and is widely used in 3D graph

rendering and displays. Java3D API is the Sun-defined 3D

display interface. Its underlying graphic library, OpenGL,

is encapsulated with DirectX [21]. Java3D supports

dynamic modeling, efficient rendering, platform

independence, and flexible interaction, being particularly

suitable for 3D landscape generation and interaction in the

Internet environment [21].In Java 3D, two geometric

objects (TriangleArray and QuadArray) are used to

construct 3D graphs [22].The TriangleArray is always a

convex polygon and its rendering efficiency is usually

higher than that of QuadArray. Thus, it is easier for the 3D

engine to optimize. In addition, the indexed mode

consumes less memory than the non-indexed mode does,

especially when the data volume is huge, because the

indexed mode can reuse the point and color data [22].

The CityGML geometric model adopts the boundary

representation model and has a large data volume. So, in

this paper, Indexed TriangleArrayis are used to construct

the CityGML 3D graph. To improve rendering efficiency,

the CityGML 3D graph can be rendered by constructing

the grid object.

4.4 CITYGML DATA STORAGE

The data involved in this paper include: the original

CityGML data, intermediate data, historical data, and

metadata. Due to the considerable size of the CityGML

data, the idea behind organizing the data in this paper is

that the first three types of data are stored in HDFS,

whereas the other metadata is stored into HBase. HBase is

a column-based database that differs greatly from the

traditional relation database in terms of data table structure

[23]. CityGML is based on LOD and thus supports

stratified or partitioned storage. The quadtree algorithm is

used in this paper to partition and query each LOD. The

metadata and quadtree codes can represent the relation

between partitions or objects. The metadata information

tables in the HBase database encompasses Divide, LODS,

and Records.

5 MapReduce-based CityGML parallel visualization

As aforementioned, CityGML document visualization

involves CityGML document resolving, transferring, and

rendering (Java3D). In the distributed environment, each

process can only handle a small number of

CityObjectMember segments to process CityGML in a

parallel manner and improve CityGML visualization

efficiency. The process of MapReduce-based CityGML

parallel visualization is shown in Figure 2.

FIGURE 2 MapReduce-based CityGML parallel visualization

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 91-98 Huang Fenghua

94

First, the input CityGML document is segmented into

several file blocks, each of which contains several

CityObjectMember segments, and submits them to the

master control program at the master node in the cluster

[24]. The Master allocates Map or Reduce tasks according

to the loads of each node. The Map tasks at each node will

perform parallel processing of the input CityGML data

blocks via resolve (), transfer (), and Render(), output the

intermediate results (i.e., the <key, value>) and store it in

the cache [2]. The Reduce node sorts all the intermediate

data acquired according to the key values, and puts the data

with the same key values into the same group. Finally, the

Reduce node calls the user-defined Reduce function

(Merge ()) to combine the sorted intermediate data, and

temporarily store the output destination files into HDFS.

After executing all Map and Reduce tasks, the Master

hands control back to the entry to the MapReduce

program.

6 Hadoop-based CityGML 3D city information cloud

service

The Hadoop-based distributed service clusters and HDFS

can be used to perform distributed processing (resolving,

transferring, and rendering) and storage of large-scale

CityGML data, because of the considerable size of the

CityGML data and the limited computing and storing

abilities of the traditional servers. Implementation of the

Hadoop-based CityGML 3D city information cloud

service is shown in Figure 3. In the cloud service clusters,

there are two types of nodes: Master and Slave. The Master

is responsible for storing CityGML metadata, scheduling

tasks, and disseminating map data. The Master uses

OGC’s W3DS specifications and GeoServer to provide the

3D spatial information services, and includes three service

interfaces: the 3D feature data service interface, tile map

service (TMS) interface, and the CityGML spatial data

access interface. The Slave is responsible for storing and

performing parallel processing (resolving, transferring,

and rendering) of CityGML data.

If the client requests a 3D feature (or image layer)

service, then the Master in the cloud receives the request

first, loads and segments the CityGML data of the

corresponding area according to the requested spatial area

and the CityGML metadata. Data blocks in HDFS are

entrusted to different Slave nodes for parallel resolving,

transferring, and rendering in order to generate their

respective 3D feature data blocks. Next, the feature data

blocks are combined. The client can obtain the 3D feature

data address using the dedicated interface from Master,

download the feature data from the server via the address,

and render and display the data through Java3D. If the

client requests the CityGML spatial data, then the Master

can directly provide the client with the CityGML spatial

data access interface. Using this interface, the client can

obtain the address to directly download the CityGML

spatial data from the server. After being resolved and

processed at the client, the downloaded 3D data can

display the 3D scenario via the web browser. In addition,

if the size of the CityGML data requested by the client is

huge, then the client can perform parallel resolving,

transferring, and rendering of the CityGML data. The

generated 3D graphs can be delivered to users in the TMS

manner, i.e., segmenting the graph into block-shaped maps

using the image pyramid’s multi-resolution model. This

strategy can desirably improve the downloading speed and

3D rendering effectiveness [25,26].

FIGURE 3 Implementation of a Hadoop-based CityGML 3D city information cloud service

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 91-98 Huang Fenghua

95

The CityGML data volume is large, so when users

request to view the same areas, it suffices for the cloud to

offer the historical results stored without repeating the

procedures. The information requested by the users and the

cloud processing results should be outputted and stored

into HDFS according to the stratification and partitioning

principles. This method amounts to the construction of a

cache for data acquisition in the cloud, thus greatly

reducing the cloud’s implementation complexity and

improving the response speed [27,28]. During the

MapReduce-based parallel processing of the CityGML

data, users can view the scenario in real-time without the

need to wait for the data to be loaded completely,

performing various operations (e.g., roaming and scaling)

on the scenario smoothly during data loading.

7 Experimental results and analysis

7.1 EXPERIMENTAL PLATFORM SETUP

To test the response speed of the Hadoop-based CityGML

3D information service, a Hadoop cloud computing

platform is developed in LAN in this paper. This

experimental platform adopts the bus topology, including

a Hadoop server (Master, NameNode), a backup Hadoop

server (Secondary NameNode), 10 Hadoop data nodes

(Slave, DataNode), and a virtual server. The platform’s

software and hardware configurations are shown in

Table 1.

TABLE 1 Hadoop cloud computing experimental platform’s software and hardware configurations

Hardware Processor Memory Operation System Hard disk space Number of hosts

Hadoop server

(Master, NameNode)

Intel dual-coreE5200 (CPU

frequency 2.50GHZ)
3.2GB Ubuntu Server 10.104 500GB 1

Backup Hadoop server

(Secondary

NameNode)

Intel dual-core E5200 (CPU
frequency 2.50GHZ)

3.2GB Ubuntu Server 10.104 500GB 1

Hadoop data node

(Slave, DataNode)

Intel dual-core E5200 (CPU

frequency 2.50GHZ)
3.2GB

Red Hat Linux(5 hosts)

Windows XP SP3(5 hosts)
500GB 10

Virtual server
Intel dual-core E5200 (CPU
frequency 2.50GHZ)

3.2GB Windows 2003 Server 500GB 1

7.2 SELECTION OF EXPERIMENTAL DATA

The CityGML dataset Ettenheim-LoD3) of the virtual 3D

model of a community in Ettenheim, Germany, was

selected as the experimental data the data are available at

http://www.citygml.org). This dataset is based on

CityGML 1.0.0 standard, 41.0 M in size, and the

corresponding experimental scenarios are shown in

Figures 4a and 4b. The CityGML model has over 300

objects at LODs 0-3, including the digital terrain models,

rivers, roads, vegetation, buildings, materials, and textures

of the interior and exterior of the buildings. Multiple

identical communities can be put together to construct

larger CityGML 3D scenario maps and provide more

experimental data. Combinations of multiple Ettenheim-

LoD3 datasets can be represented as Ettenheim-LoD3-

m×n, where m denotes the number of communities

horizontally, and n denotes the number of communities

vertically, i.e., the combined dataset is geometrically m×n

times the original size of the dataset. Figure 4c shows the

CityGML scenario that combines four communities

Ettenheim-LoD3-2×2).

7.3 COMPARATIVE EXPERIMENTS AND

ANALYSIS

Recall that clients suffer considerable delay when viewing

large 3D maps, because the resolving, transferring, and

rendering processes are inefficient due to the huge data

volume in the CityGML document to be visualized. The

response time refers to the time interval from the moment

that the user issues the request to view the entire scenario

at the client to the moment that the server returns the

processing results and the returned results are rendered and

displayed, amounting to the sum of the time needed to

load, resolve, transfer, transmit, and render the CityGML

data. Obviously, the response time is an intuitive measure

a) b) c)

FIGURE 4 CityGML virtual 3D model scenario of the experimental area: a) Panorama of the community, b) Buildings in the community,

c) Combined CityGML 3D scenario Ettenheim-LoD3-2×2)

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 91-98 Huang Fenghua

96

of the delay that the user has to suffer in viewing large 3D

maps. The impacts of different factors on the response time

are analyzed as follows.

7.3.1 Impact of the service mode on the response time

As shown in Figure 3, the cloud can deliver the CityGML

3D information service by offering 3D feature data, TMS

tile map or directly the CityGML data. These three

methods were used, respectively, for comparative

experimentation at a default Hadoop segmenting

granularity), as shown in Table 2.

TABLE 2 Comparison of response time at clients adopting different service modes

Service mode Dataset File size(MB) Number of nodes Response time(s)

3D feature data Ettenheim-LoD3 41.0 12 55.21
TMS Ettenheim-LoD3 41.0 12 32.65

CityGML data Ettenheim-LoD3 41.0 12 85.33

3D feature data Ettenheim-LoD3-2×2 164.0 12 161.06
TMS Ettenheim-LoD3-2×2 164.0 12 85.96

CityGML data Ettenheim-LoD3-2×2 164.0 12 316.39

3D feature data Ettenheim-LoD3-4×4 656.0 12 425.21
TMS Ettenheim-LoD3-4×4 656.0 12 152.65

CityGML data Ettenheim-LoD3-4×4 656.0 12 1132.33

It shows that compared with other two methods, TMS

has a shorter response time, allowing the user to view the

large 3D map with slight delay. The reason for this is that

the CityGML data in this method is all processed in a

parallel manner by the cloud, and the processing results are

delivered to the client in the form of tile maps, minimizing

the sum of the requesting, processing and response time.

7.3.2 Impact of the segmenting granularity on the

response time

Table 2 shows that TMS provides the best response speed.

In the following image, for a given amount of data

Ettenheim-LoD3-6×6, about 3.8GB), TMS performance is

evaluated at different granularity, as shown in Figure 5.

FIGURE 5 Impact of the segmenting granularity on the response time

Figure 5 shows that the delay that the client suffers

when viewing large 3D maps varies according to the

segmenting granularity. When the granularity is in the

range from 2-32 MB, the response time decreases with

increased granularity. When the granularity is over 32 MB,

the response time increases, that is, the response time is

minimized when the granularity is 32 MB. The reason for

this is that for a given amount of CityGML data to be

processed, a smaller granularity means the data is

segmented into a larger number of data blocks. Although

each data block is processed more quickly, the large

number of data blocks will increase the consumption of

time for processing, loading, and managing data blocks at

each node. On the other hand, if the granularity is large,

then the number of data blocks will decrease, causing some

nodes in the cluster to stand idle, whereas other nodes slow

down while processing large data blocks. Some nodes may

even wait for each other. Thus, in this case, the larger the

granularity, the longer the response time at the client.

7.3.3 Impact of data volume on the response time

Ettenheim-LoD3 is used in our work as the baseline data

block 41.0MB), and multiple baseline data blocks are

combined to form the composite CityGML datasets of

varying sizes. In the following image, the number of data

blocks is used to represent the data volume the fragmenting

granularity is 32MB). TMS is evaluated using different

numbers of data volume blocks) at a fixed data size

Ettenheim-LoD3-6×6, about 3.8GB).

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

2 4 8 16 32 64 128 256 512

R
es

p
o
n
se

 t
im

e(
s)

Segmenting granularity（MB）

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 91-98 Huang Fenghua

97

FIGURE 6 Impact of data volume on the response time

Figure 6 shows that in the case of a small CityGML

data volume, the MapReduce parallel mode has no obvious

advantages, but in the case of the CityGML data volume

with 1-16 data blocks, the serial response time is even

shorter than the MapReduce parallel response time. The

MapReduce parallel mode’s advantages, however, become

conspicuous when the data volume is huge. When

CityGML has 16+ data blocks, the serial response time

increases almost exponentially, whereas the MapReduce

parallel mode’s response time rises slowly. Hence, the

MapReduce parallel mode is more suited for parallel

processing of large-scale CityGML data. In the case of 144

data blocks, the MapReduce parallel mode’s response time

is less than one quarter of that of the serial mode

FIGURE 7 Impact of data volume on cloud parallel speedup ratio

Speedup is an important measure of parallel

performance. Let r denote the number of processes or

nodes, Tc and Tp denote the serial computation time and the

parallel computation time, respectively, so the speedup

ration, S, can be defined as S=Tc/Tp. Ideally, S=r, that is,

the parallel programs with r processes or nodes can run r

times as far as the serial programs. In this case, the speedup

ratio is also called the linear speedup ratio. The ideal

speedup ratio is 12 for our work. Figure 7 shows, however,

that the speedup ratio of the MapReduce-based parallel

processing of the CityGML data is clearly less than 12. The

reason is that the frequent communication and resource

scheduling between nodes during actual parallel

computation cause severe time overheads, making it only

possible to approximate, rather than reach, the linear

speedup ratio [30]. Figure 7 shows that the speedup ratios

of the cloud clusters change with increased volume of

CityGML data. When the CityGML data volume is less

than 144 data blocks, the speedup ratio of the MapReduce

parallel mode increases obviously. But when the CityGML

data volume is 144+ data blocks, the speedup ratio of the

MapReduce parallel mode decreases. The reason for this is

that in the case of a huge CityGML data volume, each node

has to process a much larger number of data blocks,

resulting in much larger time overheads caused by frequent

communication and resource scheduling between nodes. It

is even possible that some data blocks may be in the

waiting state and thus cannot be processed promptly.

8 Conclusions

Clients suffer enormous delays when viewing large

CityGML 3D maps. To address this problem, a

MapReduce-based CityGML data parallel visualization

scheme was proposed. The CityGML data is resolved,

transferred, and rendered in the cloud. The Hadoop-based

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

1 4 16 36 64 100 144 196 256 324 400 484

R
es

p
o
n

se
 t

im
e

(s
)

The volume of CityGML data (blocks)

Serial response time

Parallel response time

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

1 4 16 36 64 100 144 196 256 324 400 484

S
p

ee
d

u
p

 r
at

io

The volume of CityGML data (blocks)

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 91-98 Huang Fenghua

98

3D information service public cloud is constructed in the

cloud, enabling users to smoothly view, zoom in on, and

roam large CityGML scenarios. Experimental results

showed that the proposed scheme enables the large-scale

CityGML 3D virtual city data to be visualized and inter-

operated more efficiently.

Acknowledgment

The work was supported by the Science and Technology

Project of Fujian Province Education Department of China

NO. JA13364).

References

[1] Xu J L 2010 CityGML-based Key 3D GIS Techniques National

University of Defense Technology Changsha (in Chinese)

[2] Chen Y H 2009 On City Geography Markup Language Science of
Surveying and Mapping 34(5) 145-6+135 (in Chinese)

[3] Huang F H, Yan L M 2013 CityGML-based Virtual 3D Digital City

Modelling Computer Applications and Software 30(5) 104-7 (in
Chinese)

[4] Ge G H 2011 CityGML-based 3D Modelling of Interiors of Large

Buildings Nanjing Normal University Nanjing (in Chinese)
[5] Ou Y Qun D, Wu Z C, Hu Z W 2011 3D Modelling of CityGML

Applications Science of Surveying and Mapping 36(3) 166-8 (in

Chinese)
[6] Wu Z C, Ou Y Qun D, Li F F 2010 CityGML-based Remote Sensing

Information Sharing Wuhan University Journal of Natural Sciences

35(4) 424-6 (in Chinese)
[7] Zhou N, Zhang J 2010 CityGML-based Description of 3D City

Models Surveying Engineering 19(4) 50-5 (in Chinese)

[8] Sun X T 2011 CityGML-based 3D City Modelling and Sharing,
Chongqing Normal University Chongqing (in Chinese)

[9] Chen Y C,Wang Q S 2011 CityGML-based 3D Modeling of City
Buildings Beijing Surveying and Mapping (3) 8-10 (in Chinese)

[10] Yi H Q 2010 CityGML-based Spatial Data Storage Central South

University Changsha (in Chinese)
[11] Tom W 2008 Running Hadoop MapReduce on Amazon EC2 and

Amazon S3 http://highscalability.com/running-hadoop-mapreduce-

amazon-ec2-and-amazon-s3
[12] Yang H, Dasdan A, Hsiao R, Parker D S 2007 Map-reduce-

merge:Simple relational data processing on large clusters

SIGMOD’07 (5) 1029-40
[13] McKusick M K, Quinlan S 2009 GFS: Evolution on Fast-forward

ACM Queue 7(7) 1-11

[14] Wu X C 2009 Data center integration development technology: The
next generation GIS architecture and development model Earth

Science-Journal of China University of Geosciences 34(3) 540-6 (in

Chinese)
[15] Hao S K 2012 Analysis of Hadoop HDFS and MapReduce Strucutres

Post Design Technology (7) 37-42 (in Chinese)

[16] Fan Y S 2012 Comparison of Two Prevailing Databases in Cloud
Computing Journal of Mianyang Normal University 31(8) 68-71 (in

Chinese)

[17] Wan Z Z 2008 MapReduce-based Parallel Platform Design and

Implementation Zhejiang University Hangzhou (in Chinese)

[18] Dean J, Ghemawat S 2008 MapReduce: Simplified Data Processing
on Large Clusters Communication of the ACM – 50th anniversary

issue 51(1) 107-13

[19] Zhang L J, Huan F, Wang Y D 2012. Implementation of Parallel
Image processing in Hadoop Cloud Communications Technology 10)

59-62 (in Chinese)

[20] Qiu G, Li Z H, Zhang Y 2003 Object Constructing and Storage
Patterns of XML Data Binding Computer Engineering 29(19) 75-82

in (Chinese)

[21] Wang G Y 2007 Design and Practice of JAVA3-based Network 3D
Scenario Visualization Techniques Northwest University Xi’an (in

Chinese)

[22] Lu P, Li L, Xie S D 2012 Java 3D-based Terrain Visualization and
Key Techniques Geomatics & Spatial Information 35(10) 74-6 (in

Chinese)

[23] Zhu Z 2008 Hadoop-based Mass Data Processing Models and
Application Beijing University of Posts and Telecommunications

Beijing (in Chinese)
[24] Wan Z Z 2008 MapReduce-based Parallel Computing Platform

Design and Implementation Zhejiang University Hangzhou (in

Chinese)
[25] Zhao L L, Zhu J J, Liu S, et al. 2009 Rapid 3D Feature Extraction

and Visualization of City GML Documents Computer Engineering

and Applications 45(26) 226-9 (in Chinese)
[26] Ji Y S, Shi S H,Zhang C 2009 CityGML and W3DS-based

Distributed 3D Spatial Data Sharing Cases Coal technology 28(11)

109-11 (in Chinese)
[27] Jin B X, Bian F L 2004 3D Spatial Data Interoperability Approaches

in the Grid Environment Wuhan University Journal of Natural

Sciences 29(12) 1075-9 (in Chinese)
[28] Chen L, Xiang N P, Jiao Y P 2010 WebServices-based 3D Spatial

Data Representation and Transmission Science of Surveying and

Mapping 35(3) 162-4 (in Chinese)
[29] Liu L 2013 Design of a Platform for Real-time Processing of MPI-

based Satellite Remote Sensing Data Spacecraft Engineering 22(3)

130-4 (in Chinese)

Author

Fenghua Huang, September 1982, Fujian, P.R. China.

Current position, grades: PhD, lecturer, Sunshine college, Fuzhou university, China.
University studies: Fujian Normal university, College of Geographical Sciences 2011-2014), Fuzhou university, College of mathematics and computer
2006-2009.
Scientific interests: cloud computing, geographic information system, pattern recognition and image processing.
Publications: 10 papers.

